ATIX

Container, Orchestration,
Service Mesh

Automation for your Container Cluster

LINUXTAGE Y

Andy Wirtz

27. April 2019

Andy Wirtz ATIX
-

Andy:
» [T Consultant at ATIX AG, Germany
» automation of data centers
» deployment of cloud native services
» expertise in Docker, Kubemetes, Istio
Contact:
» phone: +49 (0)89 452 35 38-248

> mail: wirtz@atix.de

» www.xing.com/profile/Andy_Wirtz2

» www.linkedin.com/in/andy-wirtz
#atix #grazerlinuxtage2019 #container #orchestration #servicemesh /

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Focus questions ATIX
_/

How is it possible that my requested service:

» gefs as fast and as many new featurese

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Focus questions ATIX
-

How is it possible that my requested service:
» gefs as fast and as many new featurese

» is always and instantly available?

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Focus questions ATIX
-

How is it possible that my requested service:
» gefs as fast and as many new featurese
» is always and instantly available?

» looks sometimes diffrent for me than for my mate?

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Agenda

ATIX
—

Microservices,/Container

Scheduler/Orchestrator

Service Mesh

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Agenda @X

Microservices,/Container

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Wish list

ATIX
—

End user:

» how is it possible that my
requested service gets as fast

dev host

test host

prod host

and as many new features?

app v4.3.21

—

app v4.3.20

—

‘ app v4.3.20

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Wish list

ATIX
~—

End user:

» how is it possible that my
requested service gets as fast

dev host

test host

prod host

and as many new features?

app v4.3.21

—

‘ app v4.3.20

—

‘ app v4.3.20

DevOps — | want:
» N deployments per day

» independence of my
deployments from:

» hardware
» operation System
» other applications

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Limit 1 ATIX
~

Software monolith:
» many interlocked processes per a
application PP
> difficult to:
» implement new features roc 2
> gef new versions running prﬂc 1 p
proc
proc 3

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh /

ldea 1 ATIX
R

Microservices:

app 1 app 2

» one process per application

» communication via simple,

well-defined APls

> faster and easier feature
implementation

app 3 app 4

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Limit 2 ATIX
~

Dependencies: host

» shared use of libraries
app 1 app 2 app 3 app 4

» infransparent and error-prone
» deployment dependent on: bAvLO| [bAv21| |ibBvaa|\|ibcvil

» hardware
> operation system lib D v3.3 lib D v4.0 lib C v2.2
» other applications

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

ldea 2

ATIX
—

Container:

» application plus needed
libraries

> isolation

» independence

host
container 1 container 2
app app
) SR
libs libs
— —

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

New possibilities

ATIX
—

Velocity:

» for development

» for fesfing

» for deployment
Isolation:
» portability

» no dependency conflicts

dev host test host prod host
| app v4.3.21 - ‘ app v4.3.20 g ‘ app v4.3.20
dev host test host prod host
container v4.3.21 | | — | |container v4.3.20 || —> || container v4.3.20

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Agenda @X

Scheduler/Orchestrator

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Wish list

ATIX
—

End user:

> how is it possible that my
requested service is always and
instantly available?

container 1

container 2

‘ container 3

container 4

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Wish list

ATIX
~—

End user:

> how is it possible that my
requested service is always and
instantly available?

DevOps — | want:

» fo use over 80% of my
hardware at any given time

» my services up and running af
any given time

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

container 1

container 2

‘ container 3

container 4

Limit 1 ATIX
_/

Static deployments: host
» limit resource usage of ‘ container 1 container 2 ‘
containers is predefined
‘ container 3 container 4 ‘

» hosfs with significant overhead

» deployment independent of

service requests

» manual scaling as necessary

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

ldea 1

ATIX
~—

Abstraction of resources:
» collection of host to one cloud

» deployment of pods (containers)

worker

pod 1

pod 2

pod3

pod 4

in this cluster

Orchestrator:

master

pod 1

» dynamic scheduling of pods
» defining the desired state

» aufomatic adjustment of the
current state if necessary

» aufomatic scaling as necessary

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Limit 2

ATIX
—

Updates with downtime:
» all existing pods are killed

> new ones are creofed

pod 2

pod 4.

> the service is down for a small
amount of time

master

worker

master

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

|dea 2 ATIX
R

Rolling updates:

» new pods are created ot ||
» they are checked for readyness ‘ s
pod1v4320 ¢
» old wones are killed i e
. a3

> zero downtime

pod 2

pod 4.

| poo1vasar

T pod 1v4.3.21

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

New possibilities ATIX
R

Efficiency: o
» hardware abstraction
» multiple services per cloud

Automation:

» scaling dependent on the | s
requests

» some ready to use pods in stock

» selfhealing

» updates without downtime

» standardization and

reproducibility

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Agenda @X

Service Mesh

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Wish list @X

End user: &\)
» how is it possible that my o

requested service looks [pod 1320 || pod1vaszo | ‘ pod1vi321 ‘

sometimes diffrent for me than

for my mate?

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Wish list @X

End user:

» how is it possible that my
requested service looks

pod 1v4.320 ‘ ‘ pod 14321 ‘

‘ pod 1v4.320

sometimes diffrent for me than
for my mate? | ‘ \ n‘ | | | ‘ |
pod3 I8 —
DevOps — | want:

> 1o visualize the traffic between
my services

» to deny access between some
services

» to encrypt the communication
between my services

> 1o let some end users test a new
version of my service

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Limit 1 ATIX
~

Big cloud:
pod 1 pod 2

» possibly millions of confainers in
one cluster

» losing frack of the connections
and the communication pod 3

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Idea 1: Telemetry capturing ATIX
R o

Service Mesh: — pod 2

» data plane with proxies as side

container 1 container 2

car
» confrol plane with pilot, citadel ‘ e |_> ‘ Y |
and mixer
Proxies: mier pec?

container 3

» take over all network
communication

proxy

» send felemetry, logs, metrics
Mixer:
» collects telemetry, logs, metrics

» has adapters for the respective

backends

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Limit 2

ATIX
—

Permissions:
pod 1

pod 2

» every confainer is allowed to
reach every other container

> role based access control is
possible

» no resfrictions with respect to
labels, attributes, ip-adresses

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

pod 3

Idea 2: Policy enforcement

ATIX
—

Proxies: pod 1 pod 2

» call Mixer before each request container 1 container 2

» perform precondition checks

from cache ‘ e | o ‘ Y |
Mixer:
pod 3
» has adapter for policy
backends

container 3

» performs precondition checks

mixer

< -

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Limit 3

ATIX
—

Network security:
pod 1

» different affributes from different

pod 2

software defined networks

» often times no encryption of
fraffic

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Idea 3: Security features @X

Proxies: pod 1 pod 2
» get cerfificates, keys and secure | contaner 1 | container 2
naming 0
» perform mutual TLS | et { poY | 7 ‘ i |

communication
Citadel: citadel

» creates cerfificate and key pairs

> stores them as Kubernetes
secrets

» aufomatically rofafes them
Pilot:

> generafes secure naming
information

> passes it fo proxies

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Limit 4 ATIX
~

Service discovery:
pod 1 ——> | pod2v4.3.20
» round robin load balancing "
mode
» no roufing rules
pod 2 v4.3.21

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Idea 4: Traffic management @X

Proxies: pod 1 pod 2 v4.3.20
i i i . tainer 2
» get service discovery and fraffic container 1 cortainer
rules
» perform service discovery ‘ Y | Y
» load balancing modes: round 196
pod 2 v4.3.21

robin, random, and weighted

least request
v4.3.21

Pilot:

» manages and configures all
proxy instances

> is responsible for the lifecycle of
the proxies

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh /

New possibilities

Telemetry capturing:

» collecting, querying and
visualizing mefrics

» collecting logs
» collecting trace spans

» visualizing the mesh

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

e

‘ pod 1v4.320 H pod 1v4320 | pod 14321 ‘

pod 1v4.3.20 pod 1v4.3.20 pod 1v43.21
\ [} o _.--X_ o] <
| bt | | a2 | ‘ w0d2 ‘)
ol ol
a3 | | pods | ‘ a3
\L/

New possibilities ATIX
-

Telemetry capturing:

worker

» collecting, querying and
visualizing mefrics

pod1v4320 || pod1v4320

[mousa

» collecting logs [] [=]
» collecting trace spans [] [[o]
» visualizing the mesh

Policy enforcement: &\
worker
>

dynamically limit traffic to

service - B)
» modify request headers and o | ol _ x o
routing | - | - | - |

mos | [s [[s

» control access to service

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

New possibilities

ATIX
~—

Security features:

» using authentication and
authorization

» provisioning identity

» using mutual TLS

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

worker
e ‘ pod1v4320 || pod1v4320 | ‘ pod 1v4321 ‘ \
\ /
N 4
~ | e | [e
\
(| pod3 | ‘ pod 3 H pod 3 ‘)
-
~
7 ~
_/ service mesh N
7 ° \
/ 5% 45% 10% \
/
(pod 1v4.3.20 pod 1v4:3.20 pod 1v43.21 /
\. -

o _.-x_ o]

New possibilities ATIX
-

Security features:

worker

» using authentication and
authorization

[pod 1v4.320

pod 1v4.320 ‘ ‘ pod 14,321 ‘

» provisioning identity [] [|
» using mutual TLS] w]
=
Traffic management:
» configuring request routing
» traffic shifting —
° -] °
.. . 45% 45% 10%
> fault injection iy =
o ..-x
> sefting up request timeouts [| [e || me |
ol o7 o]
» controlling ingress/egress traffic G °| |U g U ;
» circuit breaking i =]

> mirroring

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Summary ATIX
-

Microservices,/containers: @
» velocity G

» isolation docker CI‘i-O

OPENSHIFT
#atix #grazerlinuxtage2019 #container #orchestration #servicemesh ‘

Summary

ATIX
—

Microservices,/containers:

» velocity

» isolation
Scheduler/Orchestrator

» efficiency

» automation

&

docker cri-o

™ O

OPENSHIFT

A i

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh ‘

Summary ATIX
-

Microservices,/containers: @
» velocity &
> isolation docker Cri-o

Scheduler/Orchestrator

» efficiency 0
» automation

Service Mesh OPENSHIFT
» telemetry capturing
» policy enforcement
» security features ‘ %ﬁ
» traffic management ~g—

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

Cluster automation ATIX

Foreman:
» deployment of hosts FUREMAN

» on-premise and in cloud -
A e

=8 7

\ & \
. @

ANSIBLE

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh www.atix.de

Cluster automation ATIX

Foreman:
» deployment of hosts FUREMAN
» on-premise and in cloud -
Katello: FOTTT O
, s 7
» lifecycle management *
: 0 s \
» errata management ")
ANSIBLE

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh www.atix.de

Cluster automation ATIX

Foreman:

» deployment of hosts FUREMAN

» on-premise and in cloud -

Katello: FOTTT O

» lifecycle management e

» errata management E)
Ansible:

» configuration management

> automation

ANSIBLE

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh www.atix.de

ATIX ATIX
~

Orcharhino:
» delivery
> improvements

» quality assurance

v

support

documentation -

Suse
& redi

ubuntu® o~

v

 puppet

SALTSTACK

AHCEntOS gepian ANSIBLE

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

ATIX ATIX
~

Orcharhino:
» delivery
> improvements

» quality assurance

> support
» documentation . 5 puper
& rediin
ATIX: bt

ARCentOS gean e ansieie

» consulfing

> engineering

> support

> fraining

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

ATIX booth ATIX
_/

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

ATIX presentations

Dr. Sebastian Oehlke:

» Terraform — Ein Einblick der Maglichkeiten von
Infrastructure-as-a-Code

> dpm, il

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh

N

HashiCorp

Terraform

ANSIBLE

www.atix.de

ATIX presentations ATIX

Dr. Sebastian Oehlke:

» Terraform — Ein Einblick der Maglichkeiten von ..’
Infrastructure-as-a-Code .
> dpm. il Terraform
Manuel Bonk:

> Next Level Ansible

> Spm, ill

ANSIBLE

#atix #grazerlinuxtage2019 #container #orchestration #servicemesh www.atix.de

	Microservices/Container
	Scheduler/Orchestrator
	Service Mesh

